「后桥」后桥限滑差速器有必要吗

2022-11-03 13:37:25 发布:网友投稿 作者:小小小
热度:126

今天我们来聊聊后桥,以下6个关于后桥的观点希望能帮助到您找到想要的百科知识。

本文目录

  • 汽车的后桥指的是什么?
  • 什么叫后桥?
  • 什么是后桥及后悬架总成?
  • 汽车后桥异响有哪些原因?
  • 车的后桥是什么
  • 后桥(驱动桥)的结构组成是怎样的?
  • 汽车的后桥指的是什么?

    车桥也称车轴,汽车前后桥就是指汽车的前轴和后轴。

    1、汽车前桥

    前桥即前轴,是传递车架与前轮之间各向作用力及其所产生的弯矩和转矩的装置。前桥多为从动桥,又称为转向桥,一般均布在车辆的前端,故称为前桥。它利用转向节与转向系相连。能够使转向器输出的转向力传递到车轮以实现车辆的转向。它不但支持车辆前部的簧载质量,承受垂直载荷,还承受各种纵向力、侧向力以及相关力矩。

    2、汽车后桥

    后桥,就是指车辆动力传递的后驱动轴组成部分。它由两个半桥组成,可实施半桥差速运动。同时,它也是用来支撑车轮和连接后车轮的装置。如果是前桥驱动的车辆,那么后桥就仅仅是随动桥而已,只起到承载的作用。如果前桥不是驱动桥,那么后桥就是驱动桥,这时候除了承载作用外还起到驱动和减速还有差速的作用,如果是四轮驱动的,一般在后桥前面还配有一个分动器。后桥分为整体桥和半桥。整体桥配非独立悬架,如板簧悬架,半桥配独立悬架,如麦弗逊式悬架。

    扩展资料:

    前后桥是汽车底盘的行使系得一部分。行使系是汽车在道路上行驶的部分。将汽车个总成部分连接为以整体,支持并保证汽车行驶。

    前桥后桥就是指前后轮轴的部分,前桥包括避震弹簧,转向器,平衡轴等,后桥还包括驱动轴,传动齿轮等。多轴货车后部还分驱动后桥和无驱后桥,无驱后桥就是没有传动轴连接,不属于驱动轮的部分,一般是3轴以上的重卡和牵引车头才有。

    无论是前桥还是后桥,都是通过弹性元件(如螺旋弹簧、钢板弹簧、气囊、减震器等)与车架连接,承载车身、车轿,一般情况下,前桥为转向桥,后桥为驱动桥。

    参考资料:百度百科-前桥

    参考资料:百度百科-后桥

    什么叫后桥?

    后桥,是指机动车辆动力传递的后驱动轴组成部分。

    后桥由两个半桥组成,可实施半桥差速运动。同时,它也是用来支撑车轮和连接后车轮的装置。如果是前桥驱动的车辆,那么后桥就仅仅是随动桥而已,只起到承载的作用。如果前桥不是驱动桥,那么后桥就是驱动桥,这时候除了承载作用外还起到驱动和减速还有差速的作用,如果是四轮驱动的,一般在后桥前面还配有一个分动器。后桥分为整体桥和半桥。整体桥配非独立悬架,如板簧悬架,半桥配独立悬架,如麦弗逊式悬架。(如图)

    机动车后桥图片

    机动车后桥图片

    机动车后桥图片

    什么是后桥及后悬架总成?

    后桥,就是指车辆动力传递的后驱动轴组成部分。悬架总成就是是汽车的车架(或承载式车身)与车桥(或车轮)之间的一切传力连接装置。

    悬架为汽车中的一个重要总成,其把车架与车轮弹性地联系起来,关系到汽车的多种使用性能。

    后桥其由两个半桥组成,可实施半桥差速运动。同时,其也是用来支撑车轮和连接后车轮的装置。而悬架作用为传递作用在车轮和车架之间的力和力扭,并且缓冲由不平路面传给车架或车身的冲击力,并减少由此引起的震动,以保证汽车能平顺地行驶。

    扩展资料

    从外表上看,轿车悬架仅是由一些杆、筒以及弹簧组成,但千万不要以为它很简单,相反轿车悬架是一个较难达到完美要求的汽车总成,这是因为悬架既要满足汽车的舒适性要求,又要满足其操纵稳定性的要求,而这两方面又是互相对立的。

    比如,为了取得良好的舒适性,需要大大缓冲汽车的震动,这样弹簧就要设计得软些,但弹簧软了却容易使汽车发生刹车“点头”、加速“抬头”以及左右侧倾严重的不良倾向,不利于汽车的转向,容易导致汽车操纵不稳定等。

    参考资料来源:百度百科——后桥

    汽车后桥异响有哪些原因?

    汽车后桥异响原因如下:

    1、齿轮油量不足或粘度下降;

    2、支承轴承松紧度调整不当;

    3、主减速器齿轮合间隙调整不当;

    4、齿轮磨损过大或损坏;

    5、差速器行星齿轮,半轴齿轮或半轴花键磨损过大或损坏。

    6、半轴或半轴套管弯曲,两者相互碰擦。

    后桥异响现象

    (1)主减速器齿侧间隙不当的异响:

    主减速器在汽车起步或换挡时,出现金属撞击声;当车速稳定后撞击声变为连续的噪声,这一般是其齿侧磨损后间隙过大。

    当在加油或放松加速踏板后,主减速器部位出现连续的“咝、咝”声,多属齿轮啮合间隙过小(或啮合不良)所致,同时伴有发热现象。其原因为齿轮及花键严重磨损,或齿侧间隙不当,以及润滑油不足。

    (2)齿侧间隙不均的异响:

    主减速器主、从动齿轮副应保持在一定的间隙,如若间隙不均也会引起异响。如汽车起步或车速急剧变化时,出现有节奏的“哽、哽”声;同时在汽车转弯时,车身后部伴有抖动现象,这通常为齿轮间隙所引起的。

    车的后桥是什么

    用来支撑车轮和连接后车轮的装置。前驱的车辆,后桥就仅仅是随动桥,只起到承载的作用。后驱的车辆,后桥是驱动桥,这时候除了承载作用外还起到驱动和减速还有差速的作用,四轮驱动的车辆,一般在后桥前面还配有一个分动器。

    后桥(驱动桥)的结构组成是怎样的?

    驱动桥由主减速器、差速器、半轴和驱动桥壳等组成。由于现有的农用车都采用后轮驱动,这些部件集中于车辆底盘的后部,故也称后桥。其主要功用是传递扭矩、增大扭矩、改变扭矩的传递方向及降低转速等,驱动桥壳还承受推动车辆前进的力。在一些采用链传动的三轮农用车上,驱动桥中无主减速器。图3-92为一般农用车驱动桥总体结构示意图。

    图3-92 驱动桥结构示意图

    1.驱动桥壳 2.主减速器 3.差速器 4.半轴 5.轮毂

    发动机扭矩经变速箱或传动轴输入驱动桥,首先由主减速器增大扭矩,降低转速,并使扭矩方向作90°的改变后经差速器将扭矩分配给左右两根半轴,最后再由半轴和轮毂传给驱动车轮。驱动桥壳由主减速器壳和半轴套管等构成,并由它承受车辆的重力和承受驱动轮上的各种作用力与反作用力矩。差速器在必要时能使两侧驱动轮以不同转速旋转。

    驱动桥壳和主减速器壳刚性地连成一体,两侧的半轴和驱动轮不可能在横向平面内作相对摆动。整个驱动桥通过具有弹性元件的悬架机构与车架连接,构成采用非独立悬架的非断开式驱动桥。这是农用车驱动桥的典型结构形式。

    (1)主减速器

    主减速器又称中央传动,通常是由一对圆锥齿轮组成,其主要功用是降低转速,增大传至车轮的输出扭矩,以保证车辆行驶过程中具有足够的驱动力和适当的行驶速度。在发动机纵向布置的情况下,主减速器还用来改变扭矩传递方向,使之与驱动轮的旋转方向一致。

    主减速器的齿轮形式主要有以下几种:

    ①直齿锥齿轮(图3-93a)。这种齿轮加工制造、装配调整较简单,轴向力较小。但加工所需的最少齿数较多(最少为12),同时参与啮合的齿数少,传动噪声较大,承载能力不够高。因此目前很少采用。

    图3-93 主减速器的齿轮形式

    (a)直齿锥齿轮 (b)螺旋锥齿轮 (c)准双曲面齿轮

    ②螺旋锥齿轮(图3-93b)。它的齿面节线形状是圆弧形或延长外摆线。圆弧齿在平均半径处的切线与该切点的圆锥母线之间的夹角A称为螺旋角;这种齿轮允许的最少齿数随螺旋角的增大而减少,最少可达5~6个齿。传动中同时参与啮合的齿数较多,故齿轮的承载能力较大,传动比大,运转平稳,噪声较小。

    这种齿轮在传动过程中,由于螺旋角的存在,除产生直齿锥齿轮所具有的轴向力外,还有附加轴向力的作用。附加轴向力的大小取决于螺旋角的大小,附加轴向力的方向与齿的螺旋方向和齿轮的旋转方向有关(图3-94)。从齿轮的锥顶看去,右旋齿顺时针旋转或左旋齿反时针旋转时,其附加轴向力都朝大端(前进时产生这种情况),使合成轴向力增大。右旋齿反时针旋转或左旋齿顺时针旋转时,其附加轴向力朝小端(倒驶时产生这种情况),使合成轴向力减小,这时有使圆锥齿轮啮合间隙减小,甚至被卡住的趋势。因此,螺旋锥齿轮对轴承的支承刚度和轴向定位的可靠性要求更高。另外,这种齿轮需要专门机床加工。目前螺旋锥齿轮主减速器在农用车上应用最多。

    图3-94 螺旋锥齿轮的附加轴向力

    ③准双曲面齿轮。准双曲面齿轮与螺旋锥齿轮相比,不仅齿轮的工作平稳性更好,轮齿的弯曲强度和接触强度更高,还具有主动齿轮的轴线可相对从动齿轮轴线偏移的特点。当主动锥齿轮轴线向下偏时(图3-93c),在保证一定离地间隙的情况下,可降低主动锥齿轮和传动轴的位置,因而使整车重心降低,有利于提高车辆行驶的稳定性。但是准双曲面齿轮工作时,齿面间有较大的相对滑动,且齿面间压力很大,齿面油膜易被破坏,必须采用含防刮伤添加剂的双曲面齿轮油,绝不允许用普通齿轮油代替。因此使准双曲面齿轮的应用受到一定的限制。

    (2)差速器

    车辆行驶时(如车辆转弯),两侧车轮在同一时间内驶过的距离不一定相等,因此,在两侧驱动轮之间设置差速器,用差速器连接左右半轴,可使两侧驱动轮以不同的转速旋转,同时传递扭矩,消除车轮的滑转和滑移现象,这就是差速器的功用。

    目前农用车上采用的差速器种类较多,由于锥齿轮式差速器具有结构简单、尺寸紧凑和工作平稳等优点,因而被广泛应用于农用车的驱动桥中。图3-95所示为这种差速器的基本结构,主要由差速器壳、半轴、半轴齿轮、行星齿轮和行星齿轮轴组成。两个半轴齿轮分别与左、右半轴通过花键连接,行星齿轮滑套在行星齿轮轴上。行星齿轮随行星齿轮轴和差速器壳与主减速器大锥齿轮一起旋转(公转),也可以绕行星齿轮轴旋转(自转)。因而当车辆两侧驱动轮遇到不同的阻力时,两半轴就有不同的转速。

    图3-95 圆锥齿轮差速器

    1、4.半轴齿轮 2.行星齿轮轴 3.行星齿轮 5、7.半轴 6.差速器壳

    当车辆沿平路直线行驶时,两侧驱动轮的运动阻力相同。此时整个差速器连同两根半轴如同一个整体一样地转动,行星齿轮只有随差速器壳的公转,没有自转,两侧驱动轮转速相同。

    当车辆转弯时,内侧驱动轮受到的阻力较大,使内侧半轴齿轮转速降低(低于差速器壳的转速)。此时行星齿轮除了随差速器壳的公转之外,还要绕行星齿轮轴自转,于是外侧半轴齿轮(驱动轮)转速增加,其增加值恰好等于内侧转速的降低值,满足了转向要求。

    行星齿轮和半轴齿轮装在差速器壳内,行星齿轮的背面即同差速器壳的接触面做成球面形状,这样可以保证行星齿轮更好地对正中心,与半轴齿轮正确地啮合。由于差速器在工作过程中,沿行星齿轮和半轴齿轮的轴线作用有很大的轴向力,为减少差速器壳同行星齿轮、半轴齿轮背面的磨损,在它们之间装有青铜的承推垫片。承推垫片磨损后可以更换。

    (3)半轴

    半轴把扭矩从差速器传给驱动轮,因承受较大的扭矩,故一般采用实心轴,其内端具有外花键,与半轴齿轮的内花键相配合。目前农用车驱动桥中,半轴的支承方式有全浮式和半浮式两种。

    图3-96a为半轴作全浮式支承的驱动桥示意图。如图所示,半轴外凸缘用螺钉和轮毂连接。轮毂通过两个圆锥滚子轴承支承在半轴套管上。半轴套管与驱动桥壳连为一体。路面对驱动轮的作用力及其引起的弯曲力矩,由轮毂通过轴承直接传给桥壳,由桥壳承受。在半轴内端作用在主减速器从动齿轮上的力及弯矩由差速器壳承受。故这种支承形式,半轴只承受扭矩,而两端不承受任何反力和弯矩。这种支承形式称为全浮式。显然,所谓“浮”,即指卸除半轴的弯曲载荷而言。

    图3-96 半轴支承示意图

    (a)全浮式 (b)半浮式 1.车轮 2、6、7.轴承 3.半轴套管 4.半轴 5.轮毂 8.半轴凸缘

    全浮式支承的半轴,外端多为凸缘盘与半轴制成一体。但也有一些农用车把凸缘盘制成单独零件,并借助花健套合在半轴外端,因而半轴的两端都是花健端。全浮式支承的半轴拆装容易,只需拧下半轴凸缘的螺钉,即可将半轴从半轴套管中抽出。半轴抽出后,车轮与桥壳照样能支承住车体。

    图3-96b所示为半浮式支承的半轴。半轴内端的支承连接情况与全浮式完全相同,故半轴内端只承受扭矩。但半轴外端的支承连接结构则与全浮式不同。半轴外端的凸缘盘用螺钉同轮毂连接,半轴用滚珠轴承支承在桥壳内。轮毂和桥无直接联系,显然,作用在车轮上的力都必须经过半轴才能传到桥壳上,因而这些力所造成的弯曲力矩也必须全部由半轴承受,然后再传给桥壳。这种支承形式称为半浮式。半浮式半轴结构简单,质量小,因而在农用车驱动桥中应用也较多。

    (4)驱动桥壳

    驱动桥的桥壳在传动系中是作为主减速器、差速器和半轴等部件的支承、包容元件,起着保护这些部件的作用。但是,驱动桥壳又同时作为行驶系主要组成元件之一,故还具有如下功用:使左右驱动轮的轴向相对位置固定,并同前桥一起支承车架及车架上各总成的重力,在车辆行驶时,承受由车轮传来路面的反作用力和力矩,并通过悬架传给车架。

    驱动桥壳的结构形式可分为整体式和分段式两大类。整体式驱动桥壳的优点是当检查主减速器、差速器的工作情况,以及拆装差速器时,不必把整个驱动桥从车上拆下来,因而保养修理方便。按整体式驱动桥壳的制造方法又可分为铸造的和焊接的两种。铸造式驱动桥壳的优点是刚度、强度较大,可设计和铸造出合理的桥壳结构形状,但质量较大。目前在农用车上广泛采用钢板冲压焊接而成的整体式驱动桥壳,冲压焊接式桥壳与铸造式桥壳相比,其质量大为减小。分段式桥壳从铸造角度考虑比整体式桥壳的制造较为容易些。但其装配、调整和保养修理均十分不便。当要拆检差速器、主减速器等部件时,必须把整个驱动桥从车上拆下来。

    今天的内容先分享到这里了,读完本文《「后桥」后桥限滑差速器有必要吗》之后,是否是您想找的答案呢?想要了解更多百科知识,敬请关注本站,您的关注是给小编最大的鼓励。

    下一篇:「d2746高铁时刻表查询」d3292高铁时刻表
    上一篇:「北京限号2021年5月限号」北京限号2021年5月限号几点