引力波有什么用(引力波到底有什么用?)

2022-10-03 21:50:09 发布:网友投稿
热度:92

引力波有什么用(引力波到底有什么用?)

本文刊载于《三联生涯周刊》2018年第18期,原文题目《宇宙中的“尺度笛声”》

美国天文学家埃德温哈勃

宇宙膨胀到底有多快

探测到来自宇宙深处的引力波,对于人类到底有什么用途?这是人们经常会问到的一个问题。

人类在地球表面,通过一对长达4公里的相互垂直的干预臂,通过激光的干预现象探测到时空自身所产生的极小标准的变更,这本身就是一个了不起的造诣,而它的意义当然远不止于此。探测到引力波信号,相当于人类又拥有了一个极其敏锐的感官,人类从此多拥有了一种方法来感知这个宇宙的存在,这也一定会对天文学研讨发生深远影响。

在20世纪20年代,埃德温哈勃(Edwin Hubble)做出了首创性的发明,所有星系都在离我们远去,这意味着全部宇宙都在膨胀,而且天体远离地球的速度与其和地球的距离成正比,这个比例的系数被称为哈勃常数(Hubble Constant)。正是这个发明让人类认识到宇宙存在着一个开始。

进入21世纪以后,人类又意识到宇宙不仅在膨胀,而且是在加速膨胀。问题在于,宇宙膨胀的速度到底有多快?这可以说是目前宇宙学研讨最主要的问题之一,因为它不仅关系到人类懂得宇宙发展的历史,还关系到宇宙的未来,以及推进着宇宙加速膨胀的暗能量的真实身份。

人类已经习惯于通过星光来认识宇宙。通过检讨吸收到的星光的红移就可以盘算出星系远离地球的速度(这也正是哈勃断定出宇宙正在膨胀所应用的办法),但更难的处所是如何测量这些星系距离我们的实际距离,想要知道星系与地球之间的确实距离,就须要对哈勃常数进行准确测量。测量这个常数,人类重要有两种手腕,可通过这两种方法得出的数值却并不一致。

天文学家们测量宇宙中天体距离地球的距离,目前最常用的手腕就是“尺度烛光”(Standard Candle)办法。人们已知某几种天体因为其构造特点比拟一致,亮度相当恒定,因而得名“尺度烛光”。当人类通过望远镜观测到这些天体时,因为它们与地球的距离不同,看上去亮度有所差别。通过这种观测到的亮度,再与其在理论上的真实亮度相比较,天文学家就可以盘算出这些尺度烛光与地球的真实距离。正是应用这种办法,天文学家们测定了哈勃常数的数值:每相隔326万光年(100万秒差距)的距离,星系退行的速度就会增长大约73.5公里/秒。但是在2015年,天文学家们通过在地球轨道上的普朗克卫星对宇宙微波背景辐射进行了精致测量,而应用这种办法资源网得出的哈勃常数的数值为每相隔326万光年的距离,星系退行的速度会增长大约70公里/秒——两者的差距不可谓不大。

问题到底出在哪里,分歧从何而来?天文学家们以为,或许两种办法都不是非常准确。例如通过“尺度烛光”办法来断定天体的距离,虽然在理论上被用作尺度烛光的天体亮度值得信任,但是在地球上进行观测,它的亮度不但会受到距离的影响,而且还会受到天体周围环境的影响。在星光流传进程中受到的宇宙灰尘和蔼体的干扰,都会下降探测的精确性。而另一方面,通过普朗克卫星探测的宇宙微波背景辐射情形来断定哈勃常数,其理论根据是所谓的“尺度宇宙模型”,这个模型囊括了暗能量、暗物资和可见物资,可以说体现了目前人类对宇宙整体状况的认知,但它是否能够精确描写宇宙的全貌?对宇宙状况懂得的不充足,同样会影响对哈勃常数的测定。

引力波有什么用

用两种办法测量哈勃常数成果却得出了不同的数值,那么怎样能力获得最精确的数值?引力波探测开启了一条新路,这有可能为天文学家供给一个前所未有的准确测量天体距离的手腕。可以说,通过引力波探测进行天文学研讨,其中最大的用途就在于测量出宇宙膨胀的速度到底有多快,以及宇宙膨胀的历史。人类甚至有可能通过引力波研讨得知宇宙毕竟为什么膨胀。

实际上,早在30多年前,就已经有天文学家展望人类有可能应用引力波来解决天文学问题。1986年9月,英国卡迪夫大学的天文学家伯纳德舒茨(Bernard Schutz)在《自然》杂志发表论文《通过引力波观测肯定哈勃常数》(Determining the Hubble Constant from Gravitational Wave Observations),他在论文中提出,人类可以通过引力波探测来解决一个困扰了天文学家许久的主要问题——宇宙膨胀的速度到底有多快。

这样一篇论文在理论上虽然无可挑剔,但因为当时人们仍然不知道是否真的有可能探测到引力波信号,所以它也就如同屠龙之技,没有太大的实际意义。当引力波信号被发明之后,这篇30多年前的论文的真正价值便体现了出来。通过引力波进行天文学测量,是一种全新的、独立的办法,因此它可以成为断定此前两种办法有效性的一个尺度,而且在理论上它的精度可以超过其他办法。

引力波通过时空本身以光速流传,在流传进程中不会受到环境的干扰,因此通过引力波来断定天体距离,精度要高于尺度烛光办法。如果说通过星光进行宇宙学探测属于光学领域,那么引力波在频率规模内更接近于声音(人们甚至可以直接把引力波信号作为音频播出),因此,仿照着“尺度烛光”概念,天文学家们又提出了“尺度笛声”(Standard Siren)概念,也就是通过探测到的引力波信号的强度来断定天体与地球的实际距离。

目前人类已经观测到了5次两个相互围绕的恒星级黑洞体系在合并进程中所发出的引力波信号,这也成为“黑洞”这种天体在宇宙中真实存在的最直接的证据。但更令天文学家们觉得高兴的是,在2017年8月,LIGO观测到了两颗中子星在合并进程中所发出的引力波。与黑洞在合并进程中完整不可见不同,这次被命名为“GW170817”的距离地球1.3亿光年之外产生的中子星合并事件,不仅释放出了引力波,还释放出大批的伽马射线。天文学家们得以通过多种手腕观测同一个宇宙学现象,并且通过估算信号的原有强度与其被探测到的强度进行比较来断定其与地球的距离。

天文学家们急于通过引力波信号来测量天体的准确距离,并且为此前进行测距的两种天文学办法充任裁判,但是问题在于,目前人类所获得的引力波数据还太少,人们只能依据目前控制的唯一一个中子星合并的引力波数据盘算哈勃常数,成果发明得出的数值是每相隔326万光年的距离,星系退行的速度就会增长大约66.9公里/秒——这个数值恰好介于通过前述两种办法所得出的两个数值中间资源网。人们信任这样的误差将随着逐渐积攒中子星合并的引力波信号而越来越小,因此天文学家们迫切希望着能够再次探测到中子星合并的引力波信号,以不断修改以此盘算出的哈勃常数。

不仅是用来测量天体与地球之间的距离,引力波信号中还藏着更多的信息。无论是在天文学范畴还是在基本物理学范畴,科学家都愿望能够通过研讨引力波信号树立更加精确的模型。例如物理学家们非常愿望懂得中子星的内部构造。这种天体是除了黑洞之外宇宙中最为致密的物体,懂得它们的内部构造对于物理学研讨的意义重大。中子星合并进程中发出的引力波信号正蕴含着这种主要的信息。

在“GW170817”中子星合并事件的观测进程中,天文学家们记载了长达100秒的引力波信号,但是最终却因为其频率过高,超越了装置的探测规模而错过了主要的一部分。正因为如此,人们才急于积攒更多的中子星合并引力波信号。例如一颗中子星到底有多大,物资毕竟能够被紧缩到什么水平?一些宇宙中的伽马射线爆发从何而来?一些重元素到底是如何发生的?这些问题都可能从引力波信号中得到答案。

另一方面,两个相互环绕旋转、最终合并在一起的恒星级双黑洞体系到底是如何发生的?它们毕竟是先由燃烧殆尽的恒星产生爆发而形成黑洞,之后在引力的作用下相互靠近,还是本来两个相互环绕旋转的恒星逐渐燃尽而成为黑洞,双星体系改变为双黑洞体系?天文学家们也愿望在积攒了足够多的黑洞合并引力波信号之后,通过断定它们此前的自旋状态对此做出断定。

刚刚开启的引力波天文学

从人类第一次探测到引力波信号算起,引力波天文学时期刚刚开启了3年时光,一切都刚刚开端。也正是如此,人们才对它充斥愿望。天文学家愿望通过引力波来懂得宇宙从出生到现在的发展历史,懂得星系形成、合并和发展的进程,懂得宇宙膨胀的全部原因和进程,并绘制出全部宇宙的黑洞地图。

不仅如此,天文学家们还愿望通过引力波预测全部宇宙的未来、探明暗能量的实质,由此懂得宇宙是否会永远加速膨胀。

想要实现这些远大目的,人类现有的引力波探测手腕还远远不够。除了位于美国的两个LIGO引力波探测器之外,欧洲六国合作建造的VIRGO引力波探测器也已经成为人类进行引力波探测的主要装置。科学家们目前正在增强LIGO和VIRGO探测器的敏锐度。日本也正在地下建设臂长3公里的神冈引力波探测器(KAGRA),这个探测器在地位上可以与LIGO和VIRGO形成互补。越来越多的引力波探测装置将逐渐在地球上形成一个引力波探测网络资源网,但最被人们寄予厚望的,当属欧洲空间局(ESA)正在建造的激光干预空间天线(LISA)。LISA筹划将在21世纪30年代开端工作,在太空中以远超地球引力波探测装置的标准探测另一个范畴的引力波信号。

在地球上的引力波探测器,因为受到其标准和周围噪声的限制,合适探测高频规模(10赫兹到1000赫兹)的引力波信号,无法探测更低频率规模的引力波信号。而将在太空中工作的LISA将探测0.00002赫兹至0.1赫兹之间的低频引力波信号。在太空中,三个彼此相距250万公里的探测器形成一个三角形,之间通过激光进行接洽,相互合作进行低频引力波探测。

在这个频率规模内,人类将有可能观测到远超恒星级黑洞的巨型黑洞合并进程。例如我们知道在很多星系的中心都有一个质量相当于数十亿个恒星的超巨型黑洞,如果两个星系彼此进行碰撞合并,这样范围的两个超巨型黑洞在合并进程中就将发出低频引力波信号,而这样的信号从本世纪30年代开端就有可能被LISA探测到。观测到超巨型黑洞的合并进程,人们必将更清楚地懂得全部宇宙的进化历史,以及星系的发展史——斟酌到宇宙中数以千亿计的星系数目,有天文学家预测,在LISA开端工作之后,或许每年都能探测到几次这样惊人的星系合并进程。

正是因为LISA探测器具有超高敏锐度,人们可以想象,当它开端工作后,会立刻发明看似宁静的宇宙中实际上充斥了各种各样嘈杂的噪声,热烈非凡。LISA将会“听到”宇宙中各种天体无休无止发出的各类引力波信号,其中会有很多是来自宇宙悠远的过去,甚至是发自宇宙的开始。全部宇宙的发展史将以引力波的方法向人类展现出来。

正是因为其造价昂贵而且意义重大,欧洲空间局首先在2015年发射了激光干预空间天线“开路者号”(LISA Pathfinder),用以测试这个想法的可行性。在地球轨道上,两个质量为2公斤的方块在没有重力影响的条件下彼此相距38厘米,通过激光相互接洽。经过一年多的测试,成果显示这种试验方法的可靠性超越了人们的预期。如无意外,LISA将在2034年升空,届时人类将开启引力波天文学的又一个全新时期。

宇宙到底是什么形态,取决于人类通过怎样的方法去视察。一方面它寒冷,空旷,僻静,另一方面它又是嘈杂无序的,充斥了各种可能和机密。人类所想象的宇宙,包括了时空本身,包括了一切的物理实在,也包括了一切的可能性。人类愿望懂得宇宙的开始,同样也愿望能够预测宇宙的未来。尽管这个目的现在看起来仍然显得遥遥无期,但引力波天文学的兴起,不仅会让我们对摸索宇宙的未来更加乐观,也会对人类文明的未来和理性的力气更加乐观。


下一篇:成都斗茶(斗茶迎大运喜纳四方客 成都人民公园)
上一篇:神经衰弱吧(出现这四个症状,说明你神经衰弱了)