「信使rna」信使rna和转运rna区别

2022-10-30 15:42:29 发布:网友投稿 作者:小小小
热度:82

今天我们来聊聊信使rna,以下6个关于信使rna的观点希望能帮助到您找到想要的百科知识。

本文目录

  • 信使RNA是什么?
  • 什么是信使RNA_信使RNA前体?
  • 信使RNA和转运RNA的区别
  • 信使RNA的信使RNA介绍
  • 生物:信使RNA是什么意思?详细!
  • 信使RNA的结构与功能
  • 信使RNA是什么?

    信使RNA的发现

    基本概念

    转录是在原核和真核细胞中以DNA为模板合成RNA的过程。

    在原核和真核生物中,转录过程是相似的。包括DNA变性,RNA聚合酶结合在单链DNA上以5′→3′方向合成RNA分子。双链中只有一条链作为转录模板,合成单链RNA分子。启动子和终止子序列决定转录的起始和终止。

    在E.coli中RNA多聚酶转录各种RNA(mRNA,tRNA和rRNA)。在真核细胞中有三类不同的RNA多聚酶,它们的功能不同。RNA

    pol

    Ⅰ转录4种rRNA中的3种;RNA

    pol

    Ⅱ转录mRNA和一些snRNA;RNAⅢ转录第四种rRNA,tRNA以及其余的snRNA。

    3种真核生物的RNA

    pol,不像E.coli

    RNA

    pol,没有一个直接地和启动子区结合,而是通过转录起始因子的介导来起始RNA的合成。对于每一种RNA多聚酶来说,转录因子是特异的,它可以识别启动子的特殊序列。

    蛋白质编码基因的启动子位于转录起始位点的上游,由不同组合的启动原件所构成。特异的转录因子和调节因子结合在这些原件上,促进RNA

    pol

    Ⅱ转录起始。增强子离启动子较远,它可被调节因子识别结合,具有促进基因转录的功能。

    由RNA

    pol

    Ⅲ转录的启动子,位于下游,在其基因编码序列内部。这种启动子,根据所转录的RNA的种类,由不同的功能区组合而构成。转录因子识别这些功能区,促进RNA聚合酶转录起始。

    18S,5.8S和28S

    rRNA作为一个转录单位一道转录,产生前体RNA分子。大部分真核生物的18S,5-8S和28S

    rRNA都是以串联重复排列,每个重复单位被不转录的间隔序列(nontranscribed

    specer,NTs)所分隔。转录单位的启动子位于NTS中,其功能是和特异的转录因子相结合,促进RNA

    pol

    Ⅰ的转录起始。

    从孟德尔定律问世以后,人们就知道了生物的各种性状是由基因控制的。一基因一酶学说的建立进一步地明确了基因是以酶的形式通过控制生化反应链来控制的。酶或蛋白和基因又是什么样的关系呢?也就是说遗传信息怎样传递,怎样表达成性状呢?就在Watson和Crick建立DNA双螺旋模型后的第三年,1957年Crick提出了中心法测(central

    dogma),指出了遗传信息的传递方向:

    DNA

    RNA→蛋白质

    DNA

    RNA

    蛋白质

    (1970年H.Temin和D.Baltimore发现了反转录酶后,Crick对中心法测又作了部分修改:

    也就是说由DNA通过转录将遗传信息传递给RNA,RNA通过翻译把信息传递给蛋白(图12-1)。通过这种单向的传递,遗传信息通过蛋白质的不同形式,如酶,结构蛋白,运载蛋白,调节蛋白等表达成一种性状。

    第一节

    信使的发现

    储存在DNA分子中的这种遗传信息能在复制中产生更多的拷贝,并翻译成蛋白质。DNA的功能构成了信息的流动,遗传信息如何转变成蛋白质呢?转录就是其中的重要的一环。基因表达时以DNA的一条链为模板合成RNA,这一过程就是转录(transcription)。催化合成RNA的酶叫做RNA聚合酶(RNA

    polymerase)。RNA和DNA结构相似,所不同之处在于:(1)RNA一般以单链形式存在;(2)RNA中的核糖其C′-2不脱氧的;(3)尿苷(U)取代了DNA中的胸苷。细胞中的RNA分成三种:mRNA(信使RNA),tRNA(转运RNA)和rRNA(核糖体RNA)。它们的功能各不相同。mRNA是合成蛋白质的模板,tRNA是转运特异氨基酸的运载工具,rRNA是合成蛋白质的装置。mRNA的碱基序列,决定着蛋白质装配时氨基酸的序列。

    1955年Brachet用洋葱根尖和变形虫进行了实验;若加入RNA酶降解细胞中的RNA,则蛋白质合成就停止,若再加入从酵母中提取的RNA,则又可以重新合成一些蛋白质,这就表明,蛋白质的合成是依赖于RNA。

    同年Goldstein和Plaut用同位素标记变形虫(Amoeba

    proteus)RNA前体,发现标记的RNA都在核内,表明RNA是在核内合成的。在标记追踪(pulse-chase)实验中,用短脉冲标记RNA前体,然后将细胞核转移到未标记的变形虫中。经过一段时间发现被标记的RNA分子已在细胞质中,这就表明RNA在核中合成,然后转移到细胞质内,而蛋白质就在细胞质中合成,因此RNA就成为在DNA和蛋白质之间传递信息的信使的最佳候选者。

    1956年Elliot

    Volkin和

    Lawrence

    Astrachan作了一项很有意思的观察:当E.coli被T2感染,迅速停止了RNA的合成,但噬菌的RNA却开始迅速合成。用同位素脉冲一追踪标记表明噬菌的RNA在很短的时间内就进行合成,但很快又消失了,表明RNA的半衰期是很短的。由于这种新合成的RNA的碱基比和T2的DNA碱基比相似,而和细菌的碱基比不同,所以可以确定新合成的RNA是T2的RNA。由于T2感染细菌时注入的是DNA,而在细胞里合成的是RNA,可见DNA是合成RNA的模板。最令人信服的证据来自DNA-RNA的杂交实验。Hall.B.D和Spiegeman,S,将T2噬菌体感染E.coli后立即产生的RNA分离出来,分别与T2和E.coli的DNA进行分子杂交,结果发现这种RNA只能和T2的DNA杂交形成“杂种”链,而不能和E.coli的DNA进行杂交。表明T2产生的这种RNA(即mRNA)至少和T2的DNA中的一条链是互补的。

    Brenner,s.

    Jacob,F.和Meselson(1961)进行了一系列的的实验(图12-2),他们将E.coli培养在15N/13C的培养基中,因此合成的RNA和蛋白都被“重”同位素所标记。也就是说凡是“重”的核糖体,RNA和蛋白都是细菌的,然后用T2感染E.coli,细菌的RNA停止合成,而开始合成T2的RNA此时用普通的“轻”培养基(14N/12C),但分别以32P来标记新合成的T2

    RNA,以35S标记新合成的T2蛋白,因此任何重新合成的核糖体,RNA,及蛋白都是“轻”的但带但有放射性同位素。经培养一段时间后破碎细胞,加入过量的轻的核糖体作对照,进行密度梯度离心,结果“轻”的核糖体上不具有放射性,“重”的核糖体上具有32P和35S,表明(1)T2未合成核糖体,“轻”核糖体却是后加放的。(2)T2翻译时是借用了细菌原来合成的核糖体,所以核糖体并无特异性,核糖体上结合的mRNA,其序列的特异性才是指导合成蛋白质的遗传信息,从而提出了mRNA作为“信使”的证据。因此他们将这种能把遗传信息从DNA传递到蛋白质上的物质称为“信使”。他们预言(1)这种“信使”应是一个多核苷酸;(2)②其平均分子量不小于5´105(假定密码比是3),足以携带一个基因的遗传信息;(3)它们至少是暂时连在核糖体上;(4)其碱基组成反映了DNA的序列;(5)它们能高速更新。Volkin和Astrachan发现高速更新的RNA似乎完全符合以上条件。Jacob和Monod将它定名为信使RNA(Messenger

    RNA)或mRNA。

    什么是信使RNA_信使RNA前体?

    信使 RNA ,中文译名“信使核糖核酸”,是由 DNA 的一条链作为模板转录而来的、携带遗传信息能指导蛋白质合成的一类单链核糖核酸。以细胞中基因为模板,依据碱基互补配对原则转录生成 mRNA 后, mRNA 就含有与 DNA 分子中某些功能片段相对应的碱基序列,作为蛋白质生物合成的直接模板。 mRNA 虽然只占细胞总 RNA 的2%~5%,但种类最多,并且代谢十分活跃,是半衰期最短的一种 RNA ,合成后数分钟至数小时即被分解。

    动物细胞内主要含有mRNA、tRNA、rRNA三种核糖核酸。其中mRNA含有遗传密码,作为蛋白质合成的模板,hnRNA是mRNA的前体。

    信使RNA和转运RNA的区别

    1、形成不同

    信使RNA是由DNA的一条链作为模板转录而来的、携带遗传信息的能指导蛋白质合成的一类单链核糖核酸。

    转运RNA,简称为tRNA,是一种由76-90个核苷酸所组成的RNA,其3'端可以在氨酰-tRNA合成酶催化之下,接附特定种类的氨基酸。

    2、功能不同

    转运RNA主要是携带氨基酸进入核糖体,在mRNA指导下合成蛋白质。即以mRNA为模板,将其中具有密码意义的核苷酸顺序翻译成蛋白质中的氨基酸顺序(见蛋白质的生物合成、核糖体)。

    信使RNA

    1、mRNA是合成蛋白质的直接模板。每一种多肽链都有一种特定的mRNA做模板,因此细胞内mRNA的种类也是很多的;它将DNA上的遗传信息转录下来,携带到核糖体上,在那里以密码的方式控制蛋白质分子中氨基酸的排列顺序,作为蛋白质合成的直接模板。

    2、tRNA的功能是转运氨基酸。在蛋白质合成过程中,tRNA与合成蛋白质所需的单体——氨基酸形成复合物,将氨基酸转运到核糖体中mRNA的特定位置上。

    扩展资料:

    转录是在原核和真核细胞中以DNA为模板合成RNA的过程。

    在原核和真核生物中,转录过程是相似的。包括DNA变性,RNA聚合酶结合在单链DNA上以5′→3′方向合成RNA分子。双链中只有一条链作为转录模板,合成单链RNA分子。启动子和终止子序列决定转录的起始和终止。

    参考资料:百度百科-信使RNA

    百度百科-转运RNA

    信使RNA的信使RNA介绍

    Messenger RNA (mRNA)——信使核糖核酸

    携带遗传信息,在蛋白质合成时充当模板的RNA。从脱氧核糖核酸(DNA)转录合成的带有遗传信息的一类单链核糖核酸(RNA)。它在核糖体上作为蛋白质合成的模板,决定肽链的氨基酸排列顺序。mRNA存在于原核生物和真核生物的细胞质及真核细胞的某些细胞器(如线粒体和叶绿体)中。

    原核生物和真核生物mRNA有不同的特点:

    ①原核生物mRNA常以多顺反子的形式存在。真核生物mRNA一般以单顺反子的形式存在。

    ②原核生物mRNA的转录与翻译一般是偶联的,真核生物转录的mRNA前体则需经转录后加工,加工为成熟的mRNA与蛋白质结合生成信息体后才开始工作。

    ③原核生物mRNA半寿期很短,一般为几分钟 ,最长只有数小时(RNA噬菌体中的RNA除外)。真核生物mRNA的半衰期较长, 如胚胎中的mRNA可达数日。

    ④原核与真核生物mRNA的结构特点也不同。

    原核生物mRNA一般5′端有一段不翻译区,称前导区,3′端有一段不翻译区,中间是蛋白质的编码区,一般编码几种蛋白质。真核生物mRNA(细胞质中的)一般由5′端帽子结构、5′端不翻译区、翻译区(编码区)、3′端不翻译区和3′端聚腺苷酸尾巴构成。分子中除m7G构成帽子外,常含有其他修饰核苷酸,如m6A等。真核生物mRNA通常都有相应的前体。从DNA转录产生的原始转录产物可称作 原始前体(或mRNA前体)。一般认为原始前体要经过hnRNA核不均一RNA的阶段,最终才被加工为成熟的mRNA。

    通常mRNA(单链)分子自身回折产生许多双链结构。原核生物,经计算有66.4%的核苷酸以双链结构的形式存在。真核生物mRNA也具有丰富的二级结构,折叠起来的mRNA二级结构有利于蛋白质合成的启动,以后mRNA处于伸展的状态则有利于转译的继续。

    mRNA的复制,转录和翻译:由一个DNA分子,边解旋,边转录。利用细胞核内部的游离核糖核苷酸合成。合成规则遵循碱基互补配对原则。注:因为mRNA没有T(胸腺嘧啶),所以模版中出现A(腺嘌呤)时,由U(尿嘧啶)代替。以上过程叫做转录,在细胞核中完成。接着,mRNA穿过核孔。和细胞质中的核糖体结合。选择tRNA运输氨基酸,和对应的三个碱基排列好(如何排列请查询:密码子)。再与其它的氨基酸通过肽键连接在一起,形成肽链。以上过程叫做翻译,在细胞质中完成。

    虽然人们已经破译了决定生命基础的蛋白质的氨基酸合成密码,也知道了是DNA携带着这种密码,但是,根据细胞学所掌握的事实:所有DNA都呆在细胞核内,而蛋白质却存在于细胞质中,像DNA这样的大分子是无法随意进入细胞质的。然而密码总是会被带入细胞质的,这一来,人们不禁要问,是谁把锁在细胞核内的DNA手里的密码带入了细胞质的呢?科学家们从DNA那里拷贝了一份密码文件,并带入了细胞质中。经过试验和观察,发现这个信使就是RNA——核糖核酸。

    生物:信使RNA是什么意思?详细!

    RNA有3种 信使rna 转移rna 核糖体rna人体内的基因要靠蛋白质来表达,dna到蛋白质就要靠这3种rna信使rna负责翻译 翻译过程中 双链dna解旋,核糖核苷酸配对生成信使rna信使rna出细胞核到细胞质中,核糖体过来 转移rna携带氨基酸与信使rna上的核糖核苷酸结合,把携带的氨基酸带来,氨基酸在形成蛋白质。而核糖体就是由核糖体rna构成的你上高一吧,到了高二会学的

    信使RNA的结构与功能

    从 (DNA)转录合成的带有遗传信息的一类单链(RNA),它在上作为蛋白质合成的模板,决定肽链的排列顺序。1961年F.雅各布和根据大肠杆菌诱导酶生成的实验结果提出:信息从DNA到蛋白质之间的转移,必需有一种RNA起传递作用,由此提出了信使核糖核酸的名称。

    生物体内的每种多肽链都由特定的mRNA编码,所以细胞内mRNA的种类很多,但通常每种mRNA的拷贝数极少(1~10个)。根据信息密码学说,3个连续的核苷酸可以编码一个氨基酸,因此从已知mRNA(或DNA)核苷酸顺序可以准确推导出蛋白质的一级结构。 原核生物mRNA一般5'端有一段不翻译区,称前导顺序,3'端有一段不翻译区,中间是蛋白质的编码区,一般编码几种蛋白质。如大肠杆菌乳糖操纵子mRNA编码3条多肽链;色氨酸操纵子mRNA编码5条多肽链。也有单顺反子形式的细菌mRNA,如大肠杆菌脂蛋白mRNA。原核生物mRNA分子中一般没有修饰核苷酸,也没有5'端帽子结构和3'端聚腺苷酸尾巴。在原核生物mRNA的起始密码子(AUG)附近(5'方向上游)的一小段长短不等的顺序,含有较多的嘌呤核苷酸,被称为SD顺序。它能和核糖体小亚基上的16SrRNA的3'端富含嘧啶核苷酸的区域配对结合,有助于带有甲酰甲硫氨酸的起始tRNA识别mRNA上的起始密码(AUG),使肽链合成从此开始。这段顺序是1974年由J.夏因和L.达尔加诺发现的,所以称为SD顺序,也称核糖体结合部位。原核生物mRNA的编码区一般编码几种功能上相关联的蛋白质,两种蛋白质的编码区之间常有一小段不翻译的顺序,叫做间隔区。有的噬菌体RNA中2个相邻的顺反子共用一段相同的编码顺序,例如,M 噬菌体RNA中的溶菌蛋白编码区共225个核苷酸中有189个核苷酸是由相邻两个蛋白质共用的。原核mRNA与真核mRNA一样使用同一套三联体密码子(真核生物线粒体mRNA有例外)。原核生物合成氨基酸的操纵子mRNA的5' 端前导顺序上有一段顺序称作弱化子。弱化子具有两种可以互变的构象,其中一种构象是转录终止的信号,能使转录中止(或衰减)。衰减调节是原核生物合成氨基酸的调控方式之一(见)。

    真核生物 mRNA(细胞质中的)一般由5'端帽子结构、5'端不翻译区、翻译区(编码区)、3'端不翻译区和3'端聚腺苷酸尾巴构成(图1a[真核生物mRNA结构示意图a一级结构示意图])。分子中除 G构成帽子外,常含有其他修饰核苷酸,如 A等。5'端帽子结构通常有3种类型,即:G(5')ppp(5')N; G(5')ppp(5') N和 G(5')ppp(5') N。图1b[真核生物mRNA结构示意图b 5'端帽子结构式,,表示碱基],表示碱基 class=image>[] 是帽子的化学结构,N右边的m代表核糖2'位羟基的甲基化。真核细胞线粒体中的mRNA无帽子结构。一般认为帽子的功能与翻译的启动有关。许多真核生物 mRNA(如珠蛋白mRNA)除去帽子后翻译效率大大降低。5'端不翻译区,也叫前导顺序。不同的真核mRNA的前导顺序长度不同,有的只有10个核苷酸,有的则有200个核苷酸。与原核mRNA相似,真核mRNA5'端不翻译区中常有一段顺序与核糖体小亚基上的18SrRNA的3'端的一段顺序互补并结合,这种结合与真核mRNA的翻译启动有关。

    翻译区(编码区)使用的密码子除线粒体(如人、牛和酵母线粒体)外与原核生物mRNA是一样的。真核生物mRNA的起始密码子都是AUG。真核和原核生物mRNA使用的密码子也都有“简并现象”,即几种不同的密码子翻译出同一种氨基酸,但不同的mRNA中简并密码子的利用率是不同的,真核与原核生物之间的差别就更大。mRNA的终止密码子有3个(UAG、UGA和UAA),其功能是停止翻译,一般只用一个终止密码子就能使翻译停止。有的mRNA有2个连续的终止密码子(见)。3'端不翻译区的长短在不同的mRNA上有所不同,β珠蛋白mRNA只有39个核苷酸,而卵白蛋白mRNA则有637个核苷酸。真核生物mRNA3'端不翻译区常有 AAUAA(A)或AUUUA(A)等顺序,它们和识别多聚A聚合酶及装配多聚A尾巴有关。除个别组蛋白mRNA外,真核生物mRNA3'端均有多聚A尾巴 3'端多聚A尾巴的长度随来源不同而不同,且随mRNA的老化而变短,通常有20~200个A。多聚A与mRNA稳定性及mRNA从细胞核转到细胞浆中有关。

    真核生物mRNA的前体真核生物mRNA通常都有相应的前体。从DNA转录产生的原始转录产物可称作原始前体(或mRNA前体)。一般认为原始前体要经过hnRNA核不均-RNA的阶段,最终才被加工为成熟的 mRNA。hnRNA上的蛋白质编码区被一些居间顺序分隔成若干段;不同的基因转录产物所含的居间顺序的数目不同,人胰岛素只有两个,而牛眼的晶体蛋白则含有数十个;居间顺序的长短也各不相同,从数十个到上千个核苷酸(鸡卵白蛋白有一个1550个核苷酸的居间顺序)。居间顺序将在剪接过程中去除。约有10~40%的hnRNA含有3′端多聚A尾巴。hnRNA经过进一步加工切除居间顺序并把分隔的蛋白质编码区连接起来,最终成为成熟的mRNA。 通常mRNA(单链)分子自身回折产生许多双链结构(图2 [噬菌体M RNA中成熟蛋白] RNA中成熟蛋白 class=image>[编码区的二级结构及外壳蛋白的起始密码子 AUG的位置])。原核生物,例如M 噬菌体RNA外壳蛋白编码区,经计算有66.4%的核苷酸以双链结构的形式存在。M RNA能翻译4种蛋白质,但效率各不相同。在通常条件下翻译外壳蛋白(其编码区在成熟蛋白的下游)的效率高于成熟蛋白的效率。但用甲醛处理M RNA破坏二级结构后,则翻译成熟蛋白的效率提高。图2[噬菌体M RNA中成熟蛋] RNA中成熟蛋 class=image>[白编码区的二级结构及外壳蛋白的起始密码子 AUG的位置] 中外壳蛋白的起始密码子 AUG(1335~1337)通常处于环(Loop)的顶端,暴露在外面,因而易于与翻译的启动因子结合而进行翻译。成熟蛋白的编码区尽管处在外壳蛋白的前面,但其起始密码子GUG(130~132)却埋在二级结构之中,故翻译效率低,只有将二级结构松开(如甲醛处理)之后才能被翻译。可见mRNA分子的二级结构对翻译蛋白质的效率有很大影响。

    真核生物mRNA也具有丰富的二级结构,如鸭珠蛋白mRNA和兔珠蛋白mRNA分别有45~60%和55~62%的核苷酸残基处在碱基配对之中。在真核生物蛋白质启动复合物中,40S核糖体实际上覆盖着mRNA上包括帽子结构在内的50~54个核苷酸,但是40S核糖体的大小比50个核苷酸的长度小得多 由于形成的发夹结构(二级结构使帽子与起始密码子之间的空间距离缩短)(图3[真核生物mRNA ]),造成40S核糖体能够覆盖包括帽子结构和起始密码子 AUG在内的50多个核苷酸,从而启动蛋白质合成。不同的mRNA中发夹结构的有无或多少各不相同。在蛋白质合成肽链继续延伸时,不需要帽子结构参加,此时核糖体覆盖的mRNA的区域约为25~35个核苷酸,mRNA的构象已不同于启动阶段而是处于一种伸展的状态,从而有利于转译的延续。可见,折叠起来的mRNA二级结构有利于蛋白质合成的启动,以后mRNA处于伸展的状态则有利于转译的继续。

    今天的内容先分享到这里了,读完本文《「信使rna」信使rna和转运rna区别》之后,是否是您想找的答案呢?想要了解更多百科知识,敬请关注本站,您的关注是给小编最大的鼓励。

    下一篇:「awsl什么意思」awsl什么意思
    上一篇:「pu胶是什么」布料pu胶是什么意思