电子基础知识(电子技术基础知识和基本概念)

2022-10-04 16:02:30 发布:网友投稿
热度:82

电子基本知识(电子技巧基本知识和根本概念)

电和磁是不可分割的统一体,有电就有磁,有磁就有电。无线电中经常用到电磁学中的概念,还有许多电与磁的换能器件。

磁场与磁力线

1.磁性、磁体、磁极、磁力

(1)磁性。能够吸引铁等物资的性质称为磁性。

(2)磁体。具有磁性的物体叫磁体,最常见的扬声器其背面的磁钢就是磁体。

(3)磁极。磁铁两端磁性最强的区域称为磁极。一资源网个磁铁有两个磁极:一个是南极,用S表现;另一个是北极,用N表现。当一块资源网磁铁分割成几块后,每一小块磁铁上都有一个S极和一个N极,如图1-4所示,也就是说S、N极总是成对涌现的。

(4)磁力。磁极间有相互作用力,这种力称为磁力。同极性间相斥,异极性之间相吸。

图1-4 磁极示意图

2.磁场和磁力线

(1)磁场。磁场和电场一样是一种特别的物资资源网,它看不见也摸不着,但的确存在。磁体周围存在的磁力作用的空间称为磁场,互不接触的两个磁体之间相互作用的力是由磁场传递的。

(2)磁力线。图1-5所示是磁力线示意图。磁力线有时还称为磁感线或磁通线。磁力线是闭合的。

图1-5 磁力线示意图

主要提醒

磁力线有方向,规定在磁体的外部,磁力线由N极指向S极,在磁体内部则是由S极指向N极,如图1-5中所示。

磁力线的方向可以用来表现磁场方向。

在磁极邻近磁力线最密,表现磁场最强;在磁体中间磁力线最稀,表现磁场最弱。用磁力线的多少来表征磁场的强弱。

3.电流磁场

电流周围存在磁场。磁场总是随同着电流而存在,电流永远被磁场合包抄。

(1)直导线电流磁场。如图1-6所示,一根直的导线,当导线中流有电流时,在导线的周围存在磁场,断定这一磁场方向用右手螺旋定则,具体办法是:让右手握住直的导线,并将大拇指指向电流流动的方向,四指所指的方向就是磁场方向。

图1-6 示意图

(2)环形电流磁场。如图1-7所示,将导线绕成环形(称为螺线管或线圈),并给线圈通电,此时的磁场方向也是用右手螺旋定则来断定,具体办法是:右手握住螺线管,让四指指向线圈中的电流流动方向,大拇指所指方向为磁场方向。

图1-7 示意图

磁通、磁感应强度、磁导率和磁场强度

1.磁通

磁通是磁通量的简称。通过与磁场方向垂直的某一面积上的磁力线总数,称为磁通。磁通用表现。当面积必定时,垂直通过该面积的磁力线愈多,解释磁场愈强,反之则弱。

2.磁感应强度

垂直通过单位面积上的磁力线数,称为磁感应强度,可见磁感应强度能够表现磁场的强弱。磁感应强度用B表现。

关于磁感应强度还要解释几点。

(1)磁感应强度也称为磁通密度。

(2)磁感应强度是一个矢量,它不仅表现了磁场中某点的磁场大小,也表现了该点的磁场方向。磁力线上某点的切线方向就是该点的磁感应强度方向。

(3)磁场中各点的磁感应强度大小和方向雷同时,这种磁场称为均匀磁场。

3.磁导率

为了表征物资的导磁性能,引入磁导率这个物理量,磁导率用表现。

由试验测得真空中的磁导率(用0表现)为一个常数。

为了比拟物资的导磁性能,将任一物资的磁导率与真空中磁导率的比值作为相对磁导率,用r表现。

依据物资的磁导率不同,可将物资划分成下列三类。

(1) r <1的物资叫反磁物资,如铜。

(2) r >1的物资叫顺磁物资,如锡。

(3) r >>1的物资叫铁磁物资,如铁、钴。

4.磁场强度

磁场强度的定义是:磁场中某点磁感应强度与媒介质的磁导率的比值,叫该点的磁场强度。磁场强度用H表现。

磁场强度也是一个矢量,在均匀磁场中它的方向同磁感应强度的方向雷同。

磁化、磁性材质和磁路

1.磁化

凡是本来没有磁性的物资使之具有磁性的进程称为磁化。凡是铁磁物资都能被磁化。

2.磁性材质

磁性材质(又称铁磁材质)通常可以划分成三类。

(1)软磁材质。这种铁磁材质在磁化后,保存磁性的才能很差。

(2)硬磁材质。这种铁磁材质在磁化后,保存磁性的才能很强。

(3)矩磁材质。这种铁磁材质只要有很小的磁场就能磁化,且一经磁化就到达饱和状况。

3.磁路

磁通(或磁力线)集中通过的路径称为磁路,相当于电路的概念。图1-8所示是磁路示意图。

图1-8 磁路示意图

关于磁路解释几点如下。

(1)为了获得较强的磁场,须要将磁通集中在磁路中。形成磁路的最好办法是用铁磁材质做成磁芯,将线圈绕在磁芯上。

(2)由于铁磁材质制成的磁芯其磁导率远大于空气的磁导率,所以磁通重要是沿磁芯闭合,只有很少部分通过空气或其他材质。

(3)通过磁芯的磁通称为主磁通,磁芯外的磁通称为漏磁通,漏磁通愈小愈好。

(4)磁路按其构造不同分为无分支磁路和分支磁路两种,其中分支磁路又分成不对称分支磁路和对称分支磁路两种,这相当于电路中的并联电路。

(5)磁路不同于电路,电路可以有开路状况,可磁路没有开路状况,因为磁力线是不可能中止的闭合曲线。

电磁感应和电磁感应定律

1.电磁感应

前面讲到电能够发生磁,电磁感应定律解释了磁也能够发生电。

图1-9所示是电磁感应现象示意图。当磁铁从上端向下插入时,会在线圈两端得到一个感应电动势,其极性为上正下负。如果磁铁在线圈中静止不动,则没有这一电动势。当磁铁从下向上插入时,感应电动势的方向为下正上负。

关于电磁感应重要解释以下几点。

(1)感应电动势又称感生电动势、感应电势、感生电势。

图1-9 电磁感应现象示意图

(2)发生电磁感应的条件是线圈中的磁通必需转变。当磁铁从上或从下插入线圈时都有感应电动势发生,这是因为磁铁活动引起了线圈中的磁通产生了转变。当磁铁在线圈中不活动时,没有感应电动势发生,因为磁铁不活动,线圈中的磁通没有转变。

(3)当线圈闭合时,由感应电动势发生的电流称为感应电流或感生电流。

2.电磁感应定律

感应电动势的大小与穿过线圈的磁通的变更率成正比,这被称为法拉第电磁感应定律。

当磁铁插入线圈中的速度愈快,磁通变更率愈高,感应电动势愈大,反之则愈小。

这必定律只能解释感应电动势的大小,不能解释感应电动势的方向。

自感、互感和同名端

1.自感

由于流过线圈本身的电流产生变更而引起的电磁感应叫自感应,简称自感。

图1-10所示电路可以解释自感现象。电路中的E是电源,H是白炽灯,L1是线圈(线圈的电阻很小,远小于白炽灯的电阻),S1是开关。

图1-10 自感现象示意图

当开关S1刚接通时,由于L1的电阻远小于白炽灯的电阻,所以电流只流过L1所在支路,没有电流流过白炽灯,这样白炽灯不亮。但是,当开关S1突然断开时,白炽灯却突然很亮后熄灭,这一现象称为自感现象。

主要提醒

这一现象是因为开关断开时,L1中的磁通突然从有突变到零,这时L1两端要发生感应电动势,这一感应电动势加在白炽灯的两端,使白炽灯突然很亮。

关于自感解释以下几点。

(1)由自感发生的电动势称为自感电动势,简称自感电势。

(2)自感电动势与线圈本身的电感量成正比关系。线圈电感量是线圈的固有参数,电感量用L表现,L与线圈匝数和构造等情形有关。

(3)自感电动势还与线圈中电流的变更率成正比关系,当L必定时,电流变更愈快,自感电动势愈大,反之则小。

(4)对某一个具体线圈而言,L的大小反应了线圈发生自感电动势的才能。

主要提醒

自感系数定义是,当一个线圈流过变更的电流时,电流发生的磁场使每匝线圈具有的磁通叫自感磁通,全部线圈具有的磁通称为自感磁链,将线圈中通过单位电流所发生的自感磁链称为自感系数。

2.互感

图1-11所示是互感现象示意图。图中有线圈L1和线圈L2,其中在线圈L1回路中接入电池和开关S1,在线圈L2回路中接入检流计。

图1-11 互感现象示意图

当开关接通后,检流计指针偏转一下后又归零,检流计的指针偏转解释有电流流过了线圈L2。

开关S1接通后,线圈L1中的电流从无到有,在线圈L1中发生了变更的磁通,这一变更的磁通穿过了线圈L2。

由于线圈L2中存在变更的磁通,所以在线圈L2两端要发生感应电动势,便有感应电流。当开关接通一段时光后,由于是直流电源,线圈L1中的电流大小不变,其磁通也不再变更,线圈L2中没有变更的磁通就不能发生感应电动势,所以检流计的指针不再偏转。一个线圈中的电流变更,引起另一个线圈中发生感应电动势的现象称为互感现象,简称互感。

关于互感解释以下几点。

(1)互感现象解释线圈L1和线圈L2之间存在磁耦合,又称为互感耦合。

(2)为了定量表征互感耦合情形,引入了互感系数这个量,互感系数用M表现。它的大小等于一个线圈中通过单位电流时,在另一个线圈中发生的互感磁链。互感M表征了磁交链的才能。

(3)线圈间具有的互感系数M是互感线圈的固有参数,它的大小与两个线圈的匝数、相互间地位、几何尺码等因素有关。

(4)由互感所发生的电动势称为互感电动势,简称互感电势。当两个线圈肯定后,一个线圈上互感电动势的大小正比于另一个线圈中的电流变更率。

(5)互感电动势不仅有大小还有方向,这一电动势的方向可以用同名端办法来肯定。

3.互感线圈同名端

图1-12所示是同名端示意图,将线圈绕向一致而感应电动势极性一致的端点称之为同名端。如图1-12(a)所示中,线圈L1和线圈L2同绕在一个铁芯上,从图中可以看出,1端和4端是两线圈的头,且两线圈的绕向雷同,所以是同名端,电动势的极性一致。2、3端也是同名端,1、2端之间极性相反,称为异名端。

图1-12 同名端示意图

同名端常用黑点表现。如图1-12(a)中所示,标有黑点的端是同名端,在电路图中的表现方法如图1-12(b)所示。

屏蔽

1.屏蔽

给变压器的一次绕组通入交换电后,在绕组周围发生了磁场,尽管有铁芯给绝大部分磁力线构成了磁路,但是仍有一小部分磁力线分布在变压器邻近的必定空间规模内。

如果变压器散发的这些残余磁力线穿过变压器邻近的其他线圈(或电路),在其他线圈中也要发生感生电动势,这便是磁干扰,是不许可的。为此,要给变压器加上屏蔽壳,使变压器中的磁场不向外辐射。

2.低频屏蔽

变压器的屏蔽壳不仅可以防止变压器干扰其他电路的正常工作,同时也可以防止其他散射磁场对变压器正常工作的干扰。

在低频变压器中,采取铁磁材质制成一个屏蔽盒(如铁皮盒),将变压器包起来。由于铁磁材质的磁导率高,磁阻小,所以变压器发生的磁力线由屏蔽壳构成回路,防止了磁力线穿出屏蔽壳,使壳外的磁场大大减小。

同理,外界的杂散磁力线也被屏蔽壳所阻拦,不能穿到壳内来。

3.高频屏蔽

在高频变压器中,由于铁磁材质的磁介质损耗大,所以不用铁磁材质作为屏蔽壳,而是采取电阻很小的铝、铜材质制成。

当高频磁力线穿过屏蔽壳时,发生了感生电动势,此电动势又被屏蔽壳所短路(屏蔽壳电阻很小),发生涡流,此涡流又发生反向磁力线去抵消穿过屏蔽壳的磁力线,使屏蔽壳外的磁场大大减小,到达屏蔽的目标。


下一篇:冲浪美女(冲浪美女玩家TOP10大起底)
上一篇:波峰焊工艺(一篇文章让你看懂波峰焊工艺流程)